Applications of Advanced Nanomaterials to Microelectronic and Photonic Devices
نویسندگان
چکیده
منابع مشابه
Photonic Materials and Devices
Our recent advances in solid-state optoelectronic materials and devices will be reviewed. In the area of glass optics, fabrication of novel microstructured and multi-core fibers and their use in realizing single mode lasers will be summarized. In organic and plastic optics, photorefractive polymers for 3D display applications and nonlinear optical polymers for high speed modulators in RF photon...
متن کاملPhotoemission-based microelectronic devices
The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and ...
متن کاملElectrospinning of nanomaterials and applications in electronic components and devices.
Electrospinning of nanomaterial composites are gaining increased interest in the fabrication of electronic components and devices. Performance improvement of electrospun components results from the unique properties associated with nanometer-scaled features, high specific surface areas, and light-weight designs. Electrospun nanofiber membrane-containing polymer electrolytes show improved ionic ...
متن کاملOxide Reduction in Advanced Metal Stacks for Microelectronic Applications
Aluminum and copper are widely used for microelectronic interconnect applications. Interfacial oxides can cause device performance degradation and failure by significantly increasing electrical resistance. Interfacial oxide layers found in Al/Ta and Ta/Cu metal stacks were studied using Transmission Electron Microscopy (TEM) combined with Energy Dispersive Spectroscopy (EDS) and Parallel Electr...
متن کاملSilicon photonic devices for mid-infrared applications
The mid-infrared (IR) wavelength region (2–20 μm) is of great interest for a number of applications, including trace gas sensing, thermal imaging, and freespace communications. Recently, there has been significant progress in developing a mid-IR photonics platform in Si, which is highly transparent in the mid-IR, due to the ease of fabrication and CMOS compatibility provided by the Si platform....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanomaterials
سال: 2015
ISSN: 1687-4110,1687-4129
DOI: 10.1155/2015/451503